Mahindra unveils five electric SUVs under two brands based on its new INGLO platform

More

Stoffel Vandoorne And Mercedes-EQ Seal World Championship Titles As Edoardo Mortara Wins In Seoul

More

BYD leads the EV growth race, deliveries soar 315% in H1 2022 YoY

More

Mercedes-Benz EQS SUV goes on sale in Germany, prices start at 110,658 euros

More

Truemag

  • Electric Car News
  • Electric Car Reviews
  • Plug-in Hybrids
  • Technology
  • Home
  • About Us
  • Privacy Policy
  • Advertise
  • Charging Map

Nissan Develops World First Analysis Technique For Better Li-Ion Battery Durability

Nissan-Leaf-BatteryCan the battery performance of electric vehicles be improved by observing electrons? Nissan sought an answer to this question through an advanced research project in partnership with universities in Japan.

The result: Nissan Motor Company and its affiliate Nissan Arc Ltd. announced the development of the world’s first analysis method that enables direct observation of electron activity in the cathode material of lithium ion batteries during charging and discharging.

Applying this analysis technique to future research and design of battery materials could enable Nissan researchers to develop high-capacity and high-durability batteries that may extend the driving distance of zero emission EVs and improve their durability.

Nissan Arc Ltd., a 100-percent subsidiary of Nissan Motor Company, developed the analysis method in a joint R&D effort with Tokyo University, Kyoto University and Osaka Prefecture University. The newly-developed technique provides an accurate depiction of how electrons are emitted from certain elements that constitute the cathode material of lithium ion batteries when charging and discharging.

In order to develop high-capacity, long-life lithium ion batteries, the maximum possible amount of lithium must be stored in the electrode’s active material, which allows it to generate the highest possible number of electrons. To develop such a material, an accurate reading of the electron activity inside the battery is essential. Existing analysis methods did not allow researchers to observe the movement of electrons. It was not possible to determine how the various electrodes’ active material — i.e. manganese (Mn), cobalt (Co), nickel (Ni), oxygen (O) — were emitting electrons and how many electrons were actually being emitted.

The newly-developed analysis method combines x-ray absorption spectroscopy that utilizes L-absorption edges and the first principle calculation from Japan’s Earth Simulator supercomputer.

X-ray absorption spectroscopy had been used in the past to analyze batteries. However, the majority of this analysis was done using K-absorption edges that can only observe restrained electrons in the atom (electrons that are not involved in the charging and discharging due to the vicinity to the nucleus) and not the actual electrons involved in cell reaction. By applying x-ray absorption spectroscopy that utilizes L-absorption edges, electrons that were directly involved with the cell reaction can be observed. Accurate analysis of the amount of electron mobility is made possible by combining the observation results with first principle calculations from the Earth Simulator supercomputer.

For years scientists have wanted to understand the origin of electrons during charging and discharging, and this newly-developed analysis method finally makes it possible. Scientists can observe the exact phenomenon inside a battery cell, especially the behavior of active materials of electrodes, permitting further study of better-performing, longer-lasting electrode materials.

Nissan Arc has used the new analysis technique to investigate lithium-rich high-capacity electrode materials which are considered promising agents to increase energy density by 150 percent. The analysis revealed that at a high potential state, electrons originating from oxygen were active during charging. Meanwhile, electrons that originated from manganese were observed to be active during the discharge reaction. These findings were a big step forward toward the commercial development of lithium-rich electrode materials which can produce higher-capacity, long-lasting batteries.

Mar 13, 2014Blagojce Krivevski
My Electric Avenue Moving To The Next Stage Of EV ProjectAutolib Expands Into London
You Might Also Like
 
Nissan Launches LEAF Qualified Pre-Owned Program in Quebec
 
Li-Ion Batteries for EV Will Surpass $26 Billion in Annual Revenue by 2023
Blagojce Krivevski

Blagojce Krivevski is physicist and green technology lover. Keep in touch with Blagojce through his email, web site, Twitter, Linkedin, Facebook and Google+.

March 13, 2014 Electric Car News, Technologyelectric vehicles, li-ion battery, Nissan
Follow Us
  • facebook
  • twitter
  • google-news
  • linkedin
  • youtube
  • instagram
  • feedburner
Recent News
Electric Vehicles Have the Lowest Annual Fuel Cost of All Light-Duty Vehicles
August 16, 2022
Polestar O2 roadster concept planned to enter production as Polestar 6
August 16, 2022
Mahindra and Volkswagen Explore Strategic Alliance to Accelerate Electrification of Indian Auto
August 16, 2022
Mercedes-Benz EQE SUV interior revealed ahead of October debut
August 16, 2022
Skoda launches software update ME3 for ENYAQ iV
August 16, 2022
About
ElectricCarsReport.com ElectricCarsReport.com is a website dedicated to pure electric vehicles and the full range of consumer information and tools about electric cars, green technology energy, and the environment.
Latest News
Electric Vehicles Have the Lowest Annual Fuel Cost of All Light-Duty Vehicles
August 16, 2022
Polestar O2 roadster concept planned to enter production as Polestar 6
August 16, 2022
Mahindra and Volkswagen Explore Strategic Alliance to Accelerate Electrification of Indian Auto
August 16, 2022
Subscribe

Sign up for our newsletter to receive the latest news and event postings.

Get in touch

Email: [email protected]

Archives
  • facebook
  • twitter
  • google-news
  • linkedin
  • youtube
  • instagram
  • feedburner
DMCA.com
© ElectricCarsReport.com | All Rights Reserved.