








The 296 GTB, the latest evolution of Maranello’s mid-rear-engined two-seater berlinetta, was premiered today during an online event broadcast on Ferrari’s social media and web channels. The 296 GTB redefines the whole concept of fun behind the wheel, guaranteeing pure emotions not just when pushing the car to its limits, but also in day-to-day driving situations.
The 296 GTB ushers in an authentic revolution for Ferrari as it introduces a new engine type to flank the marque’s multi-award-winning 8- and 12-cylinder power units: a new 663 cv 120° V6 coupled with an electric motor capable of delivering a further 122 kW (167 cv). This is the first 6-cylinder engine installed on a road car sporting the Prancing Horse badge; it unleashes its massive 830 cv total power output to deliver previously unthinkable performance levels and an innovative, exhilarating and unique soundtrack.
The car’s name, which combines its total displacement (2992 l) and number of cylinders was chosen, with the addition of the GTB (Gran Turismo Berlinetta) acronym in finest Ferrari tradition, to underscore this new engine’s epoch-changing importance to Maranello. It is not simply the living, beating heart of the 296 GTB, but it also ushers in a new V6 era that has its roots deep in Ferrari’s unparalleled 70-year-plus experience in motor sports.
The very first Ferrari V6, in fact, featured a 65° architecture and debuted on the 1957 1500 cc Dino 156 F2 single-seater. This was followed in 1958 by bigger displacement versions on the front-engined sport prototypes – the 196 S and 296 S – and F1 cars, such as the 246 F1 which powered Mike Hawthorn to the F1 Drivers’ Championship title the same year.
The very first Ferrari to sport a mid-rear-mounted V6 was the 246 SP in 1961, which won the Targa Florio both that same year and in 1962, amongst many others. Also in 1961, Ferrari secured its first Constructors’ title in the Formula 1 World Championship with the 156 F1, which was powered by a 120° V6. Ferrari first installed turbos between an engine’s cylinder banks on the 126 CK in 1981 and subsequently on the 126 C2 in 1982, which became the first turbo-charged car to win the Formula 1 Constructors’ World Championship title. This was followed up with a second title in 1983 with the 126 C3. Lastly, V6 turbo hybrid architecture has been used on all Formula 1 single-seaters since 2014.
The 296 GTB’s plug-in hybrid (PHEV) system guarantees it is an incredibly usable car as well as cutting pedal response times to zero and delivering a 25km (15 miles) range in all-electric eDrive mode. The car’s compact dimensions and the introduction of innovative dynamic control systems as well as meticulously honed aero ensure that the driver will instantly experience its astonishing agility and responsiveness to commands. Its sporty, sinuous design and extremely compact dimensions also visually underscore its exceptional modernity, brilliantly referencing the likes of the 1963 250 LM, the perfect marriage of simplicity and functionality.
As was the case with the SF90 Stradale, for clients who want to exploit the car’s extreme power and performance to the utmost, particularly on the track, the 296 GTB is also available with the Assetto Fiorano package, which includes lightweight features and aero modifications.
POWERTRAIN
The 296 GTB is the first Ferrari road car to sport a V6 turbo with a vee with an angle of 120° between the cylinder banks, coupled with a plug-in electric motor. This new V6 has been designed and engineered from a clean sheet by Ferrari’s engineers specifically for this installation and is the first Ferrari to feature the turbos installed inside the vee. Aside from bringing significant advantages in terms of packaging, lowering the centre of gravity and reducing engine mass, this particular architecture helps deliver extremely high levels of power. The result is that the new Ferrari V6 has set a new specific power output record for a production car of 221 cv/l.
As the V6 turbo is integrated with an electric motor at the rear, the 296 GTB’s combined maximum power output is 830 cv, putting it at the top of the rear-wheel-drive sports car segment as well as making it extremely flexible. This is true both in terms of day-to-day contexts (the 296 GTB has a full-electric mode range of 25 km), and in driving enjoyment (accelerator pedal response is instant and smooth at all engine speeds).
The powertrain assembly comprises a V6 turbo ICE, with the 8-speed DCT and E-Diff, and the MGU-K located between the engine and the gearbox. A clutch is set between the ICE and the electric motor to decouple them in electric-only eDrive mode. Lastly there is a high-voltage battery and the inverter which controls the electric motors.
INTERNAL COMBUSTION ENGINE
Thanks to its 663 cv and 221 cv/l, the 296 GTB’s ICE sets the new specific power output record for a production road car. Central to achieving this result was the introduction of the 120° vee configuration with equally-spaced firings as well as the positioning of the turbos inside the vee which produces a much more compact engine and optimally distributed masses.
The architecture is also ideal in terms of combustion sequence and the integration of the intake plenums and the engine supports on the intake sides of the cylinder heads. The engine is thus lighter and more compact because of the elimination of the plenums and exterior supports, while the fluid-dynamics benefit from the reduction in volumes, boosting intake efficiency. The 120° vee architecture, which offers more space between the cylinder banks than a 90° vee, meant the turbos could be installed centrally, thus significantly reducing the unit’s overall size and the distance the air has to cover to arrive in the combustion chamber, maximising the fluid dynamics and efficiency of the intake and exhaust line ducts.
To obtain this specific power output, the pressure in the combustion chamber had to be pushed to new heights. Boosting the pressure in the chamber demanded exceptional development from both a thermal-fluid-dynamic and structural point of view without compromising on engine weight and reliability. To that end, Ferrari poured all of its significant expertise in alloys, dimensioning and components into engineering the aluminium engine block and cylinder heads. Both components are new and specific to the new V6 architecture.
The distribution is completely new: drive is transmitted to the pump assembly (water and oil) via a timing chain and to the valvetrain via an offset sprocket and a dedicated timing chain per cylinder bank. The main chain has a dedicated hydraulic tensioner, two bush chains with relative hydraulic tensioner and different calibrations for right and left bank, as well as a dedicated chain for the oil pump assembly. The valvetrain, which has roller fingers with hydraulic tappets, has specific intake and exhaust valve profiles.
The engine benefited from the latest Ferrari combustion chamber development introduced on the SF90 Stradale: central injector and spark plug with 350-bar pressure injection system that improves the fuel-air mix in the chamber, performance and reduces emissions. The intake and exhaust ducts were redesigned and tuned to maximise volumetric efficiency and thus guarantee high levels of turbulence in the chamber.
The IHI turbochargers have been completely redesigned using higher performance alloys. This meant the maximum revs of the turbos could be increased to 180,000 rpm, with a consequent improvement in performance and boost efficiency, which increases by 24%. The symmetrical, couter-rotating turbos are of the mono-scroll type: the technical solutions adopted have reduced the compressor wheel diameter by 5% and the turbo rotor 11% compared to the V8 applications, despite the very high specific power. The reduction in the rotating masses (the inertia of the two rotating elements has been reduced by 11% compared to the 3.9l V8 solution) has reduced the spool up time ensuring instantaneous power delivery.
The crankshaft is made from nitrided steel. To ensure it has a 120° crank angle, after the initial forging of the rough ingot, the crankshaft is twisted and then subject to a deep nitriding heat treatments (to guarantee resistance to high loads), machining and balancing. The firing order of the new V6 (1-6-3-4-2-5) is the result of the crankshaft’s journal geometry. 100% of the rotating masses and 25% of the alternating masses are balanced, and therefore its level of balance allows loads on the bushings to be reduced without increasing the weight of the engine.
A new variable displacement oil pump was developed to guarantee that the oil pressure is continuously controlled right across the engine’s entire operating range. A solenoid valve, controlled by the engine ECU in a closed loop, is used to control the pump’s displacement in terms of flow and pressure, delivering only the amount of oil required to guarantee the functioning and reliability of the engine, whilst simultaneously providing a reduction in the power absorbed by the pump itself. On the oil scavenge side, to minimise splashing losses, the suction system was made more powerful using six scavenge rotors: three specific dedicated rotors for the crankcase below the crank throws, one for the distribution compartment and two for the cylinder head compartments.
In Ferrari engines, the intake plenum is normally located in the centre of the vee. However, the V6 hails a paradigm shift in that regard: its plenums are on the side of the cylinder heads and are integrated with the support for the throttle valve. The light thermoplastic material used to make them keeps engine weight down. This solution boosts performance because of the shorter ducts and consequent fluid-dynamic detuning, in addition to reducing time-to-boost as a result of the high pressure line’s smaller volume.
The new architecture also led to the development of a more linear exhaust line located in the upper part of the engine compartment. The shape of the exhaust reduces back pressure and contributes to boosting performance. The exhaust manifold and catalyser housings are made entirely from Inconel®, a steel-nickel alloy that reduces the weight of the exhaust and makes it more resistant to high temperatures.
Sound-wise, the 296 GTB rewrites the rulebook by harmoniously combining two characteristics that are normally diametrically opposed: the force of the turbos and the harmony of the high-frequency notes of a naturally-aspirated V12. Even at low revs, inside the cabin, the soundtrack features the pure V12 orders of harmonics which then, at higher revs, guarantee that typical high-frequency treble. This Ferrari’s soundtrack matches its performance, creating a sense of unprecedented involvement, and marking the turning of a new page in Maranello’s berlinetta history.
Even to those outside the car, the shrill sound of the engine is instantly recognisable. The first in the F163 engine family, this V6 earned itself the nickname “piccolo V12” (little V12) during the development phase. The 120° V architecture guarantees a symmetrical firing order while the equal-length, tuned exhaust manifolds combined with the single exhaust line outside the hot-V amplify the pressure waves. These characteristics are what lend such purity to the orders of harmonics, which are further helped by a limiter that hits an impressive 8500 rpm. The patented “hot tube” has been completely redesigned for the 296 GTB and is positioned prior to the exhaust gas treatment systems so that it channels the pure sound into the cabin, further enhancing driver involvement and excitement.
ELECTRIC MOTOR
This is the first ever Ferrari with a rear-wheel drive-only PHEV (Plug-in Hybrid Electric Vehicle) architecture in which the ICE is integrated with a rear-mounted electric motor producing up to 122 kW (167 cv) derived from the Formula 1 application from which it also inherits the MGU-K (Motor Generator Unit, Kinetic) moniker. The electric motor and ICE communicate via the Transition Manager Actuator (TMA) which allows them to be used both together to produce a combined power output of 830 cv or decouples them to allow the electric motor to run solo.
Aside from the V6 turbo and the 8-speed DCT already adopted on the SF90 Stradale, Ferrari Roma, Portofino M and the SF90 Spider, the powertrain architecture also includes the MGU-K electric motor positioned between the engine and gearbox, the TMA to decouple the electric motor from the ICE, the 7.45 Kwh high voltage battery, and the inverter which controls the electric motors.
The MGU-K is a dual-rotor single-stator axial flux motor. Its compact size and its structure allowed the length of the powertrain to be reduced which, in the final analysis, helped shorten the 296 GTB’s wheelbase. The electric motor charges the high voltage battery, turns on the ICE, supplies it with additional torque and power (up to 167 cv) and allows the car to be driven in all-electric eDrive mode. The MGU-K’s improved design allows it to reach maximum torque of 315 Nm, around 20% more than previous applications.
The TMA (Transition Manager Actuator) allows very rapid static and dynamic transitions from electric to hybrid/ICE mode and vice-versa, thereby guaranteeing smooth, progressive torque. Its control software, which was developed entirely in-house by Ferrari, communicates with the DCT, motor and inverter software to more efficiently manage ICE ignition and its connection and disconnection to the transmission. Thanks to new generation components, the TMA allowed the design of an incredibly compact transmission: the system has an overall impact on the length of the powertrain of just 54.3 mm. Its architecture comprises a triple-plate dry clutch, a clutch command module in line with the driveline with a clutch control linkage, and ECUs.
Thanks to an innovative design manufactured using laser welding, the 296 GTB’s high voltage battery has a 7.45 kWh capacity and a competitive weight/power ratio. The battery pack is located under the floor and to minimise volume and weight, the cooling system, structure and fixing points are integrated into a single component. The cell modules contain 80 cells connected in series. Each Cell Supervisor Controller is installed directly in the modules to reduce volume and weight.
The 296 GTB’s inverter is based on two silicon modules connected in parallel, the power deliver mode of which has been optimised to achieve the MGU-K’s torque increase to 315 Nm. This component converts the electric energy with an extremely high level of efficiency (over 94%) and can supply the power required to start the V6 even when there is maximum demand for electric power.
VEHICLE DYNAMICS
The 296 GTB’s dynamic development focused around boosting the car’s pure performance, delivering class-leading levels of driver engagement making full use of the new architectural solutions (V6, hybrid powertrain, shorter wheelbase) as well as improving the usability and accessibility not just of the car’s performance, but also the functionalities afforded by the hybrid layout.
The targets were achieved by honing the architecture and keeping all the main vehicle components as compact as possible, as well as managing energy flows and their integration with the car’s vehicle dynamic controls. New components were developed specifically for the 296 GTB, not least the Transition Manager Actuator (TMA) and the 6-way Chassis Dynamic Sensor (6w-CDS) – a world first for the automotive sector. There are also new functions, such as the ABS evo controller, which uses the data gathered by the 6w-CDS, and the grip estimation integrated with the EPS.
In Ferrari, the way the car handles and provides feedback to the driver (what internally is referred to as the fun to drive factor) is measured by five different indicators:
- Lateral: response to steering wheel inputs, the prompt reaction of the rear axle to steering inputs, effortless handling
- Longitudinal: rapidity and smoothness of the accelerator pedal’s response
- Gear shifting: shifting times, sensation of coherent progression through the gears with every gear change
- Braking: brake pedal feel in terms of travel and response (efficiency and modular travel)
- Sound: level and quality in cabin and progression of engine sound as revs rise.
How easily accessible and usable the performance is is also of significant importance when driving the 296 GTB: for instance, in electric-only eDrive mode, the car can reach speeds of up to 135 km/h without resorting to the ICE. In Hybrid mode, on the other hand, the ICE backs up the electric motor when higher performance is required. The transition between electric and hybrid driving modes is managed very fluidly to guarantee smooth, constant acceleration and to make the power of the powertrain available as rapidly as possible. Stopping distances in the dry have been significantly shortened by the new ABS evo and its integration with the 6w-CDS sensor, which also ensures more consistent braking force under repeated heavy braking.
From a chassis perspective, the wheelbase is 50 mm shorter than previous Ferrari mid-rear-engined berlinettas to the benefit of the car’s dynamic agility. Other solutions that enhance the car’s handling and performance include the brake-by-wire system, the ‘Aero’ brake callipers, electric power steering, the rear active aero device and SCM-Frs magnetorheological dampers.
Meticulous attention was paid to reducing weight to ensure the car’s balance and delicacy of handling: adding the weight of the hybrid system was offset by a number of different solutions, including the new V6 engine, which weighs 30 kg less than the V8 unit used on previous berlinettas, and the extensive use of lightweight materials. The result is a dry weight of just 1470 kg that is class-leading in regards to the overall weight-to-power ratio: 1.77 kg/cv.
Weight was also saved by equipping the 296 GTB with a single electric motor driving the rear wheels only. With regard to the main charging functions, there is regenerative braking at the rear in normal braking conditions as well as when ABS intervenes, overbraking on the rear axle on lift-off and battery charging via combined management of the ICE and electric motor.
Aside from electric traction control and energy recovery thanks to the new brake-by-wire unit, which guarantees hydraulic and electric blending in all operating modes (including ABS), another traction control and distribution solution making its world premiere on the 296 GTB is the brand-new ‘ABS evo’. Thanks to brake-by-wire, pedal travel is reduced to an absolute minimum, which boosts the feeling of sportiness without neglecting efficiency when braking lightly or the pedal travel feel when on the track. The new ABS control module, which is integrated with the new 6w-CDS sensor, allows the grip limits of the rear tyres to be pushed still further, makes for greater repeatability of stopping distances and thus improving performance when turning into corners.
The transition between electric and hybrid modes is fundamental to the sports car characteristics of the 296 GTB, as is how the powertrain manages the power available. Both play a fundamental role in the integration with the car’s dynamic functionalities: this is why a power management selector (eManettino) has been adopted alongside the traditional Manettino. The eManettino has four positions:
- eDrive: the internal combustion engine is off and there is pure electric drive to the rear wheels; with a fully-charged battery the car can cover 25 km at a maximum speed of 135 km/h
- Hybrid (H): this is the default mode on ignition. The power flows are managed for maximum efficiency and the control logic defines the intervention of the internal combustion engine. With the engine on, the car develops its maximum power and performance
- Performance: the ICE is always on and helps maintain the battery efficiency to ensure full power at all times. This is the ideal setting for press-on driving
- Qualify: provides maximum performance but at the cost of lower battery recharging
The grip estimator in the Side Slip Control (SSC) system is flanked by a second device based on the electric power steering. By using the information from the EPS and cross-referencing it with the side slip angle estimated by the SSC, it can estimate the grip of the tyres during every steering manoeuvre, including when the car is not being driven on the limit, in order to guarantee that the controllers intervene correctly based on grip conditions. When driving on the track, grip estimation is 35% faster than previous applications.
The 296 GTB has a new ABS control module developed exclusively for Ferrari and available from the ‘Race’ position upwards. It uses the information from the 6w-CDS to obtain a more precise estimation of speed and optimise braking distribution compared to the Yaw Rate Sensor used up until now. The 6w-CDS measures both the acceleration and the speed of rotation on three axes (X, Y, Z) enabling the other vehicle dynamic controls to more accurately read the car’s dynamic behaviour thus optimising their intervention. This accuracy allows the longitudinal force of the tyres to be better exploited when braking in a straight line and on switchbacks, when the rear axle is subject to the natural compromise between braking performance and lateral stability. The result is an excellent improvement in braking distances: compared to the F8 Tributo the 296 GTB reduces the 200-0 km/h braking distance by 8.8% and also improves the repeat braking efficiency from that speed by 24%.
296 GTB – TECHNICAL SPECIFICATIONS
POWERTRAIN | |
Type | V6 – 120° |
Overall displacement | 2992 cm3 |
Bore and stroke | 88 mm x 82 mm |
Max. power output ICE | 663 cv |
Max. power output hybrid system | 610 kW (830 cv) at 8000 rpm |
Max. torque | 740 Nm at 6250 rpm |
Max. revs | 8500 rpm |
Compression ratio | 9.4:1 |
High voltage battery capacity | 7.45 kWh |
DIMENSIONS AND WEIGHTS | |
Length | 4565 mm |
Width | 1958 mm |
Height | 1187 mm |
Wheelbase | 2600 mm |
Front track | 1665 mm |
Rear track | 1632 mm |
Dry weight | 1470 kg |
Dry weight/power ratio | 1.77 kg/cv |
Weight distribution | 40.5 % front / 59.5 % rear |
Fuel tanks capacity | 65 litres |
TYRES AND WHEELS | |
Front | 245/35 ZR 20 J9.0 |
Rear | 305/35 ZR 20 J11.0 |
BRAKES | |
Front | 398 x 223 x 38 mm |
Rear | 360 x 233 x 32 mm |
TRANSMISSION AND GEARBOX | |
8-speed F1 DCT | |
ELECTRONIC CONTROLS | |
eSSC: eTC, eDiff, SCM, FDE2.0, EPS, ABS Evo, 6w-CDS; high-performance ABS/EBD with energy recovery | |
PERFORMANCE | |
Max. speed | > 330 km/h |
0-100 km/h | 2.9 s |
0-200 km/h | 7.3 s |
200-0 km/h | 107 m |
Fiorano lap time | 1’ 21” |
FUEL CONSUMPTION AND CO2 EMISSIONS | |
Under homologation |