The electric revolution will be coming soon to a street near you. In a matter of weeks, Volkswagen will reveal the production version of the ID.4 electric SUV, part of a worldwide strategy to deliver millions of electric vehicles to help combat global climate change.
Electric vehicle owners know the joys of driving and owning a battery-powered model. But for those who are on the fence about whether an electric vehicle may be right for them, Volkswagen has developed this Q&A to tackle everything you need to know, and a few things you might be afraid to ask.
OWNING
Why should I buy an electric vehicle?
Electric vehicles have zero direct emissions from driving and can help reduce carbon dioxide emissions compared to traditional vehicles. Researchers suggest that there may be no way to combat global warming without millions of electric vehicles worldwide. They’re fun to drive and quiet on the road, plus you can recharge them at home. They are also far more efficient at using energy compared to liquid fuel vehicles, which waste about two-thirds of their fuel as heat and friction.
Simply put: Electric vehicles are the future of personal transportation.
Why can’t I buy one today?
In the United States, EV supplies have mostly been limited either to specific states or to luxury vehicles. Volkswagen aims to change that starting with the ID.4 electric compact SUV, the first of a line of EVs it plans to launch in the United States over the next several years. These vehicles will be what Volkswagens have always been – affordable and fun to drive.
Why is Volkswagen building so many EVs?
The Volkswagen Group has pledged to make its global business carbon neutral by 2050, and electric vehicles will help make that possible. By 2025, the Group plans to build about 1.5 million electric vehicles a year worldwide – including at its U.S. factory in Chattanooga.
Are they as safe as regular vehicles?
Yes. All Volkswagen vehicles are subjected to intense safety testing. They must meet rigorous safety standards and crash tests required by law, and often exceed these standards.
Aren’t the batteries in EVs just versions of what I have in my phone or laptop?
While most electronics use some form of lithium-ion battery today, the chemistry and design of an EV battery is quite different than those used in consumer electronics.
The battery in my phone only lasts a few years. Will I have to replace the battery in my EV?
EV batteries in vehicles are not designed to be replaced like those in phones, and it’s rare for an EV owner to face that issue. EVs are designed to provide a certain amount of power for many years of ownership. While all batteries can lose charging capacity over time, Volkswagen EVs have several strategies to help combat that process, from liquid cooling to energy reserves. For example, the Volkswagen e-Golf came with an eight-year or 100,000-mile (whichever occurs first) limited warranty on the battery pack.
CHARGING
How long does it take to charge an EV?
That depends on how much power the charger can provide, and how fast the vehicle can accept it. There are three general levels of charging power:
- Level 1 is your typical 120-volt plug. Most EVs can get roughly 2-5 miles of range per hour of charging at one.
- Level 2 chargers are the most common; they run off 240-volt circuits and can add about 12-25 miles per hour of charge. Most charging is either Level 1 or 2, and about 80 percent of all vehicle charging takes place at home.
- Level 3 is commonly known as DC fast charging and requires special equipment with heavy-duty cables and inverters. These systems typically are only found at public charging stations and used for occasional recharging on long-distance drives. A Level 3 charger can recharge an EV battery to 80 percent capacity in roughly 30-40 minutes. (Charging speeds at a DC fast charger slow for the final 20 percent of capacity due to heat buildup.)
Because the power coming out of an outlet is typically alternating current (AC), and vehicle batteries rely on direct current (DC), that electricity has to be converted, and the vehicle’s onboard converter can only handle a certain amount at a time. (That’s also the reason fast charging uses DC – it bypasses the onboard converters.) Charging times can also be affected by temperature extremes; very hot or cold weather can slow charging rates and lower the total amount of energy the battery can hold.
Can I plug in anywhere, or to any EV charger?
Not quite. All Level 1 and Level 2 chargers use the same standard plug, but there are different plugs for DC fast charging. It can be a bit frustrating, but more automakers are moving to use the Combined Charging Standard (CCS) already used on all Volkswagen Group EVs.
Your Volkswagen EV will come from the dealer with a Level 1 charger that plugs into a standard three-prong, 120-volt outlet. However, if you have a driveway or a permanent parking place, you will likely want to get a Level 2 charger installed at your home. Many apartment buildings and parking garages are also installing Level 2 chargers nationwide. There are about 59,000 public Level 2 CCS chargers available in the United States, along with about 2,500 CCS DC fast chargers, and more are being built.
What if I don’t have a set parking place?
That’s one of the challenges that Volkswagen, along with companies like Electrify America, have been working to tackle. Some EV owners may be able to rely on charging at their workplaces, or paid public charging. Other firms are building chargers that can be added to public streets. For some people who want to buy an electric vehicle, this may be too big of a hurdle to overcome today – but many companies want to solve it soon.
How much energy does an EV battery pack hold?
The non-scientific answer is: A lot. According to federal energy data, the average U.S. home uses 30.5 kilowatt-hours of energy a day. The smallest battery pack in the Volkswagen ID.3 electric hatchback sold in Europe could power that typical home for a day and a half. The largest available pack for the ID.3 holds 82 kilowatt-hours of energy – or roughly 5,500 times that of your smartphone.
Can I plug it in when it’s raining?
Electric vehicle charge ports and plugs use software to confirm they’re properly connected before sending electricity to a battery, and they’re designed to work in all weather conditions.
DRIVING
EV people say driving one is fun. What’s so fun about it?
It’s the very nature of electric driving. Your gas-powered engine makes its maximum torque and horsepower when it revs up to a few thousand revolutions per minute. An electric motor makes its maximum torque the instant it begins spinning, and it makes for a great driving experience. The last generation Volkswagen e-Golf was as quick to 30 mph as the same-generation Volkswagen GTI, even though the GTI had nearly 100 horsepower more than the e-Golf.
Volkswagen EVs will come in rear-wheel-drive and all-wheel-drive versions, and the Volkswagen electric vehicle chassis locates the battery at the bottom of the car, giving it a low center of gravity designed for better handling. All Volkswagens offer engaging vehicle dynamics and that can get even better in the Volkswagen EVs.
Oh, and it’s quiet to drive – there’s no engine noise or exhaust.
How far can I go in an EV?
Every EV in the United States has an EPA rated range estimate for a full charge. In daily use, EVs offer a constantly updated estimate of available range, based on your current driving data, your recent past driving history and other factors such as temperature and HVAC usage. Your range estimates may be lower in winter or higher in summer than the official number; batteries tend to work best at moderate temperatures and lose some capacity in extreme cold or heat.
What about range anxiety? EV owners must worry about that all the time.
Range anxiety can happen to EV owners, but it’s no different than planning your fill-ups in a gasoline-powered vehicle. According to federal data, the average American commuter was traveling about 35 to 40 miles per day before the pandemic; the next generation of Volkswagen EVs starting with the ID.4 are engineered to have EPA estimated ranges that well exceed those daily driving needs. Beyond that, the number of public charging stations continues to grow, and more tools than ever are available to help EV drivers find a charging spot.
What is regenerative braking?
EVs all work the same way: Batteries feed electric power to a motor, which turns the wheels. One of the ways EVs can help save energy is by regenerative braking, which simply reverses that flow — using the wheels to turn the motor and send power back into the batteries.
Volkswagen EVs have a sophisticated set of sensors and software that lets drivers decide how much regenerative braking they want, and whether they want the system to kick on the moment they take their foot off the accelerator pedal. At higher speeds, you may want to coast as far as possible. In stop-and-go traffic, the regenerative braking can make driving even more efficient.
While regenerative braking can handle a lot of speed reduction, EVs do also have traditional friction brakes. The software system ensures a safe engagement of the traditional brakes as needed.
What kind of tires do EVs have?
EVs typically come with low rolling resistance tires that help extend their range while still providing assured handling. These typically do not cost more to replace than comparable regular tires.
Why do EVs seem to have strange wheel choices?
Aerodynamics. Well-designed EVs try to reduce aerodynamic drag as much as possible to maximize their range. Wheels designed to smooth the air flow around the car can make a noticeable contribution to range in most EVs.
What about a transmission?
Volkswagen EVs don’t have a traditional multi-gear transmission and don’t need them; the motor connects with the wheels via a single-speed gearbox. You can set different driving modes that offer either more sporty acceleration, or those that can help save energy and are designed to extend your vehicle’s range in many cases.
SAVING
Q: Do EVs really reduce carbon dioxide compared to gas vehicles?
Yes, they can over time, especially when they use renewable energy sources.
While EVs do require slightly more energy to build, they can make up that CO2 deficit and then some over their useful lifetimes. Exactly how much less CO2 emissions driving an electric vehicle results when compared to driving a gasoline-powered vehicle depends on the source of the electricity the owner uses for charging, which varies by geographic region. In many places, electric grids are converting to more CO2-free sources – such as solar and wind – and as that trend continues, the CO2 benefits of EVs will grow. But even at today’s mix of energy sources in the United States, electric vehicles can have a CO2 benefit, as most emissions are lower for electricity generation than burning gasoline.
Q: Do electric vehicles cost more or less than comparable internal combustion engine vehicles?
Electric vehicles typically have higher MRSPs than comparable gas-powered vehicles due to the expense of batteries. That said, many electric vehicles, including the upcoming Volkswagen ID.4, qualify for government incentives, such as a potential U.S. federal tax credit of up to $7,500. They can also be cheaper to run, as the cost of charging is generally lower than the cost of gas to drive a comparable distance. Plus there are fewer parts that need servicing (i.e., no more oil changes), which can result in lower scheduled maintenance costs.
Depending on how long you own the car and how much you drive, these lower costs may help offset an EV’s initial higher purchase price.
Volkswagen’s strategy to make electric vehicles for millions involves driving down the cost of the components, including batteries, by building EVs at a global scale.
Q: How much does it cost to charge an EV?
If you’re at home, your EV recharging costs are based on your electric rates. In some places, EV owners can get special programs from their electric utilities that offer special discounts for charging at night or during off-peak times. The current U.S. average price of residential electricity is 13 cents per kilowatt-hour; at that rate, a full recharge of most EVs today would cost less than $10.
Public chargers range from free to more expensive than home charging for DC fast charging, depending on their power levels and networks. In general, charging your EV is still less expensive than filling up a tank of gasoline.