









Range and efficiency are set to define the electric era. Outstanding range will make electric cars suitable for every journey and will speed adoption. Exceptional efficiency will create a virtuous circle of battery size and weight reduction, allowing us to go further with less.
Mercedes-Benz is determined to lead the way. It’s already leading the charts of real-world range with the EQS with 245 kW, as evidenced by the recent Edmunds test where an EQS 450+ travelled 422 miles on one charge, 77 miles further than any other car previously tested.
But Mercedes-Benz is not resting. Their engineers are working intensively to take range and efficiency to a whole new level. The VISION EQXX is the result of a mission they set themselves to break through technological barriers across the board and to lift energy efficiency to new heights. It demonstrates the gains that are possible through rethinking the fundamentals from the ground up. This includes advances across all elements of its cutting-edge electric drivetrain as well as the use of lightweight engineering and sustainable materials.
“The Mercedes-Benz VISION EQXX is how we imagine the future of electric cars. Just one-and-a-half years ago, we started this project leading to the most efficient Mercedes-Benz ever built – with an outstanding energy consumption of less than 10 kWh per 100 kilometers. It has a range of more than 1,000 kilometers (620 miles) on a single charge using a battery that would fit even into a compact vehicle. The VISION EQXX is an advanced car in so many dimensions – and it even looks stunning and futuristic. With that, it underlines where our entire company is headed: We will build the world’s most desirable electric cars.” Ola Källenius, Chairman of the Board of Management of Daimler AG and Mercedes-Benz AG.
VISION EQXX – designed for the road trip to electromobility
The Mercedes-Benz VISION EQXX answers the progressive demands of a modern generation of customers for and emotionality through innovation. Part of an advanced technology program, this software-defined research prototype was engineered by women and men with the creativity, ingenuity and determination to deliver one of the planet’s most efficient cars – in every respect.
They did so using the latest digital technology, the agility of a start-up and the speed of Formula 1.
The result is an efficiency masterpiece that, based on internal digital simulations in real-life traffic conditions, will be capable of exceeding 1,000 kilometers (620 miles) on a single charge with an outstanding energy consumption of less than 10 kWh per 100 kilometers (efficiency of more than 6 miles per kWh).
By ripping up the automotive engineering rulebook, Mercedes-Benz has built a software-driven electric car that re-imagines the road trip for the electric era. At the same time, it presents a highly progressive interpretation of the fundamental Mercedes-Benz principles of modern luxury and Sensual Purity. Rather than simply increasing the size of the battery, the cross-functional, international team focused on maximizing long- distance efficiency. They pulled out all the stops in drivetrain efficiency, energy density, aerodynamics and lightweight design.
The VISION EQXX is an exciting, inspirational, yet completely realistic way forward for electric vehicle technology. In addition to its groundbreaking energy efficiency, it offers meaningful answers to pressing issues. For instance, sustainable materials throughout decreases the carbon footprint considerably. Its UI/UX features a radical new one-piece display that comes to life with responsive real-time graphics and spans the entire width of the vehicle. Other elements of the UI/UX help the car and driver work together as one, and even use technology that mimics the workings of the human brain. And the software-led development process that delivered it revolutionizes the way electric cars are designed.
This car is one outcome of an ongoing program that is delivering a blueprint for the future of automotive engineering. Many of its features and developments are already being integrated into production, including the next generation of the MMA – the Mercedes-Benz Modular Architecture for compact and medium-sized cars.
VISION EQXX: main points at a glance
Efficiency means achieving more from less. The VISION EQXX is packed with efficiency improvements that push the envelope with a mixture of advanced technology and talented teamwork. The outcome will be a road-legal research prototype that delivers more range from less energy, more tangible luxury and convenience with less impact on the environment, and more electric mobility with less waste. A raft of digital tools and a software-led approach also delivered more car in less time.
#EnergyWizard: Across the board, efficiency engineering achievements delivered an astounding energy consumption of less than 10 kWh per 100 km (efficiency of more than 6 miles per kWh)
#ElectricDrive: Radical new system designed and built in-house – it achieves benchmark efficiency of 95% from battery to wheels
#RangeBuster: More than 1,000 km (over 620 miles) on a single charge on public roads puts an end to range anxiety
#EnergyDensity: With expert engineering and Formula 1 thinking, our battery chemists squeezed the energy of the EQS into the dimensions of a compact car. The battery pack in the VISION EQXX holds almost 100 kWh of energy, yet has 50% less volume and is 30% lighter than the already benchmark pack in EQS.
#AeroChamp: Exterior designers and aerodynamicists delivered a #benchmark drag coefficient of cd 0.17
#SustainableMaterials: Innovative recycled and plant-based materials remove waste from landfill and lower carbon footprint
#UpliftMindset: A pioneering team of Mercedes-Benz engineers worked with the world’s fastest race lab at High Performance Powertrains (HPP) and Mercedes-Benz Grand Prix (MGP) to engineer a highly efficient and compact electric drivetrain and lightweight battery case
#BionicEngineering: Inspired by natural forms and in partnership with innovative start-ups, engineers used advanced digital tools to lower weight and reduce waste by removing excess material assisted by 3D printing
#RollingEfficiency: Ultra-low-rolling-resistance tires with optimized aerodynamic geometry combine with lightweight magnesium wheels for increased range
#BrakingLightly: Lightweight brake discs made from aluminum alloy are a great fit for the VISION EQXX and help keep weight down
#EfficiencyOnTheRoad: Electric-only chassis with lightweight F1 subframe brings racing efficiency to the road
#SolarPower: Ultra-thin roof panels feed the battery system for up to 25 km of extra range
#HumanMachineMerge: Intuitive and intelligent user interface and user experience with guidance and assistance for efficient driving brings even closer harmony for the electric age
#SensualPurity: Totally focused EV exterior/interior design ethos underlines role as halo car for the all- electric future. Mercedes-Benz will build the most desirable cars
#FastTechProg: From clean sheet to on the road in just 18 months. The VISION EQXX is part of a technology program that can adapt innovative technologies for series production faster than ever before
#Transformation: VISION EQXX demonstrates Mercedes-Benz transformation into an all-electric and software-driven company
#SoftwareDriven: Software-driven approach key to success in achieving efficiency goals and a rapid development process, including groundbreaking battery management system.
#GlobalResponsibleLeadership: VISION EQXX accelerates Mercedes-Benz goal to “Lead in Electric” and set benchmarks in sustainable mobility.
VISION EQXX: key technical data at a glance
Battery energy content, usable | kWh | <100 |
Max. system voltage | Volts | >900 |
Energy consumption | kWh/100 km (miles/kWh) | <10 (>6) |
cd value | 0.177 | |
Max. power output | kW | ~150 |
Wheelbase | in | 110 |
Gross vehicle weight | lbs | ~3,858 |
Pioneering drivetrain for the electric era – waste not, want not
On any road trip, it’s the car that does the work – soaking up the miles and leaving the driver and passengers to experience the journey. In the long-haul mindset that makes the VISION EQXX so special, efficiency is king.
With output of around 150 kW, the super-efficient electric drivetrain (encompassing everything from battery to electric drive unit to wheels) in the VISION EQXX provides the power and stamina underpinning this exceptional long-distance runner. More than a composition of individual parts, it is a work of engineering art in its own right. Tasked with a very clear and specific set of targets, the team set out to create an electric drivetrain with a world-beating combination of efficiency, energy density and lightweight engineering. So, let’s throw in a figure here – 95% efficiency. That means up to 95% of the energy from the battery ends up at the wheels – pure and simple. Compare that to just 30% from even the most efficient ICE drivetrain or around 50% from an average human long-distance runner.
The Formula 1 experts at Mercedes-AMG High Performance Powertrains (HPP) in Brixworth (United Kingdom) know a thing or two about making every kilojoule of energy count. In an intense collaboration, Mercedes-Benz R&D worked with them hand-in-hand to redesign the drivetrain and slash the system losses.
The electric drive unit in the VISION EQXX is a dedicated unit consisting of the electric motor, transmission and power electronics featuring a new generation of silicon carbides. The power electronics unit is based on the upcoming Mercedes-AMG Project ONE hypercar.
Battery development at its best in collaboration with HPP
Rather than simply increasing the size of the battery, Mercedes-Benz and the HPP team developed a completely new battery pack for the VISION EQXX, achieving a remarkable energy density of close to 400 Wh/l. This benchmark figure is what made it possible to fit a battery pack with just under 100 kWh of usable energy into the compact dimensions of the VISION EQXX.
The substantial increase in energy density comes in part from significant progress in the chemistry of the anodes. Their higher silicon content and advanced composition mean they can hold considerably more energy than commonly used anodes. Another feature that contributed to the impressive energy density is the high level of integration in the battery pack. This platform, developed jointly by Mercedes-Benz R&D and HPP, created more room for cells and helped reduce the overall weight. The separate compartment for the electrical and electronic (EE) components, called the OneBox, likewise made more room for cells, with added benefits for installation and removal. The OneBox also incorporates novel safety devices with energy efficient operations that consume significantly less energy than the equivalent component in a production EV.
Tasked with pushing the envelope of technical feasibility on all levels, the battery development team also decided to experiment with an unusually high voltage. Increasing the voltage to more than 900 volts proved an extremely useful research tool for the development of the power electronics. The team was able to gather a great deal of valuable data and is currently assessing the potential benefits and implications for future series production.
Several more aspects of the battery design add to its exceptional efficiency. For instance, its lightweight lid was engineered jointly by Mercedes-AMG HPP and their chassis partners at Mercedes-Grand Prix. The lid is made from a unique, sustainable composite material derived from sugar-cane waste, reinforced with carbon fiber, as used in Formula 1. The battery also features active cell balancing, which means drawing the energy evenly from the cells while the car is driving – in effect, giving it greater stamina. Overall, the battery weighs around 1,091 lbs, including the OneBox.
Let the sun shine in – more range thanks to solar power
The sun is the original source of all energy on Earth, but it can take a very circuitous path. So, it made perfect sense for the Mercedes-Benz development engineers to cut out the “middleman” and go straight to the big boiler in the sky for some extra oomph.
The electric system that powers many of the ancillaries in the VISION EQXX draws additional energy from 117 solar cells on the roof. It was developed in collaboration with the Fraunhofer Institute for Solar Energy Systems ISE – Europe’s largest solar energy research institute. The net result of reducing the energy drain on the high-voltage system is an increase in range. On a single day and under ideal conditions, this can add up to 25 km (15 miles) of range on long-distance journeys.
The solar energy is stored in a lightweight lithium-iron-phosphate battery, which supplies a climate blower, the lights, the infotainment system and other ancillaries. Mercedes-Benz and its partners are working towards using solar power to charge the high-voltage system, too.
Efficient wheels and tires – optimized for rolling resistance and aerodynamics
On every car, it is the tires that form the all-important interface with the road. For the VISION EQXX Mercedes-Benz engineers worked in cooperation with Bridgestone. Together, they took advantage of Bridgestone’s Turanza Eco tire combined with lightweight and environmentally friendly ENLITEN and ologic technology enabling ultra-low-rolling-resistance.
The tire design also features aerodynamically optimized sidewalls to match the covers mounted on the 20-inch, lightweight, forged-magnesium wheels. The semi-transparent double-spoke design of these covers meets all aerodynamic requirements while at the same time retaining a view of the rose-gold accents adorning the wheels.
The beautiful simplicity of lightweight interior design
Marking the launch of a new, super-purist design style, the VISION EQXX represents a new expression of efficiency in interior design. In a departure from the conventional design approach, the interior layout focuses on just a few modules and the beautiful simplicity of lightweight design. This is expressed through the absence of complex shapes and the integration of lightweight structures into the interior aesthetic in a wholly organic way, making traditional trim elements unnecessary.
From mushrooms to vegan silk, nature’s influence continues when we step inside the VISION EQXX. The lightweight luxury feel of the interior comes from extensive use of lightweight, sustainable materials and organic-inspired design detailing. The basic principle is maximum comfort and style with minimum weight – and absolutely no animal-derived products.
The interior features a large number of innovative materials sourced from start-ups around the world. For example, the door pulls are made from AMsilk’s Biosteel fiber. This high-strength, biotechnology-based and certified-vegan silk-like fabric comes from the inventor of biofabricated (nature-identical) fiber. Combining revolutionary science with true environmental integrity, its use here marks a first in the automotive sector.
Another sustainable material gracing the interior of the VISION EQXX is MyloTM, a verified vegan leather alternative made from mycelium, which is the underground rootlike structure of mushrooms. It is certified bio-based, which means it is made predominantly from renewable ingredients found in nature. This completely new material category created by the power of biotechnology is designed to be less harmful to the environment and is used for details of the seat cushions in the VISION EQXX.
The animal-free leather alternative called Deserttex® is a sustainable cactus-based biomaterial made from cactus fibers combined with a sustainable bio-based polyurethane matrix. In this combination, the leather alternative has an exceptionally supple finish that is extremely soft to the touch. Forthcoming versions have a higher cactus content, giving this material the potential to halve the ecological footprint associated with conventional artificial leathers.
On the floor, the carpets in the VISION EQXX are made from 100% bamboo fiber. In addition to being fast- growing and renewable, this natural raw material offers an extremely luxurious look and feel. Mercedes-Benz chose these sustainable, innovative, high-performance materials because they, and others like them, have the potential to replace all sorts of petroleum- and animal-based products currently used in automotive applications. Together, they show a way forward for luxury design that conserves resources and is in balance with nature.
Elsewhere, the VISION EQXX makes extensive use of recycled waste materials, such as the recycled PET bottles used in a shimmering textile to enhance the floor area and door trim. Higher up in the interior, the designers used Dinamica made from 38% recycled PET to create a wrap-around effect linking the upper edge of the screen with the doors and headliner. The interior also features UBQ material, a sustainable plastic substitute made from household and municipal landfill waste.
Body-in-white – intelligent, efficient and sustainable through bionic engineering and advanced materials When it comes to lightweight engineering, the best on Earth is Mother Nature. No one else comes close. Over millions of years, she has honed the finest examples of high-efficiency long-distance travelers – from the Monarch butterfly to the Arctic Tern.
With a considerably shorter timescale for the VISION EQXX, Mercedes-Benz engineers drew inspiration from her creations and pulled in some lateral-thinking external expertise to assist. The result is a weight efficient design derived from engineering excellence paired with a sustainable combination.
This intelligent use of sustainable advanced materials and methods inspired by nature is dubbed bionic engineering and was facilitated by a digital process called bionic mesh design. Mercedes-Benz has a long history of applying bionic engineering techniques dating back to its “bionic car” concept study from 2005.
BIONEQXXTM casting
Currently the largest aluminum structural casting at Mercedes-Benz, BIONEQXX is the major structural component at the rear end of the VISION EQXX – the rear floor. It was developed in-house by Mercedes-Benz using entirely digital techniques and a software approach that is utterly unique within the automotive sector. The result is optimum functionality packaged within the compact dimensions of the available space. Furthermore, the team created this impressive and manufacturable one-part casting in just four months.
Taking their cues from organic forms, the development engineers sought to use material only where necessary for structural function, i.e. where loads are exerted. In line with the laws of nature, where there is no load there is no need for material.
The most important of the structural criteria is the need for very high rigidity and excellent crash performance. The beauty of the one-part BIONEQXX casting is the ability to pair this with functional integration within an extremely lightweight single component rather than an assembly of multiple parts joined together.
Efficient use of energy and information
The one-piece display is also highly energy efficient. Its mini-LED backlight consists of more than 3000 local dimming zones, meaning it consumes power only as and when needed in specific parts of the screen.
The 3D navigation screen adapts to the type of content being shown. For instance, if you’re driving in an urban area, abstract visualization of the surrounding buildings helps provide orientation amid densely packed streets. However, if you are traveling on the highway or open road, the level of detail diminishes to provide a clearer overview of the journey. This has the added efficiency benefit of reducing the energy consumption of the display.
As well as providing seamless navigation, the intelligence in the VISION EQXX can mine for data based on the car’s route, with the avatar on hand to function as an intelligent tour guide. It can even help you manage your music library and offer local suggestions.
There is also a system to help you drive more efficiently. From energy flow to terrain, battery status and even the direction and intensity of the wind and sun, the efficiency assistant curates all the available information and suggests the most efficient driving style. This actually enhances the driver’s own senses by providing input on external conditions that the driver themselves is unable to feel directly – in the way that, for instance, a cyclist can feel the force of the wind or the extra effort involved to pedal uphill. This sensorial support is further augmented by the ability of the VISION EQXX to use the map data to “see into the future”, anticipating what lies ahead to help the driver take advantage of it in a way that maximizes efficiency. A cool orb graphic in the display provides an instinctive overview, underpinned if desired by sound.
And if more detailed information is what you want, a series of screens will tell you all you need to know with easy-to-follow visuals and infographics. The influence of current acceleration, gradient, wind and rolling resistance on energy consumption are shown in real time. If it’s a full analysis you want – you got it. Equally, if you’re someone who prefers to travel on a “need to know” basis, the VISION EQXX will remain silent.
The simplicity of the interface is a further development of the Zero Layer concept first used in the EQS, which eases driver-vehicle interaction by removing submenus. The interface is efficient and effective, thanks to intelligence and personalization. Highly proactive, it shows you what you need when you need it, with an intuitive zoom feature providing access to all functions. Your human road trip sidekick has their own dedicated zoom feature and entertainment zone. And if you prefer to travel alone, this part of the display powers down to save energy.
The development and testing process – a digital journey driven by software
The global road trip to electric mobility is fueled by advanced software and digital processes. The highways and byways are many and varied, the attractions and connections along the way inspiring.
Pulling together such a diverse array of expertise and innovative ideas from around the world to create the VISION EQXX in half the time was a masterclass in software management. The team made extensive use of open-source technology, augmented by elements created in-house. Agile working practices and monthly release planning ensured a continuous flow of end-to-end functions and early integration of solutions.
The scale of the digital development work involved in designing and engineering the VISION EQXX is truly groundbreaking. Highly advanced digital tools such as augmented and virtual reality dispensed with the need for time-consuming physical mock-ups. It also facilitated simultaneous development work by remote teams working in different parts of the world – from Stuttgart (Germany) to Bangalore (India) and from Brixworth (UK) to Sunnyvale (California). This massive uplift in digital power slashed the time spent in the wind tunnel from more than 100 hours to just 32. It also meant more than 186,411 miles of test driving was covered virtually.
The digital development made extensive use of Software in the Loop (SiL) systems. This kept the commissioning phases with the real hardware extremely short and enabled us to drive large-scale tests early on in the project. Using this approach, the team was able to install the drive unit, flash the software and get the wheels turning on the VISION EQXX within the space of just two hours. This extremely nimble, efficient and responsive teamwork was made possible by a combination of a motorsport mindset and intelligent use of the comprehensive testing options at Mercedes-Benz.
This highly effective and efficient digital development approach means that many of the innovations in the VISION EQXX could be quickly adapted for production applications.