Mahindra unveils five electric SUVs under two brands based on its new INGLO platform

More

Stoffel Vandoorne And Mercedes-EQ Seal World Championship Titles As Edoardo Mortara Wins In Seoul

More

BYD leads the EV growth race, deliveries soar 315% in H1 2022 YoY

More

Mercedes-Benz EQS SUV goes on sale in Germany, prices start at 110,658 euros

More

Truemag

  • Electric Car News
  • Electric Car Reviews
  • Plug-in Hybrids
  • Technology
  • Home
  • About Us
  • Privacy Policy
  • Advertise
  • Charging Map

WSU Researchers Extend Life of Lithium-Ion Batteries

Washington State University researchers have developed a new technology that could triple the capacity of lithium-ion batteries commonly used in electric cars and consumer electronics.

Led by Grant Norton, professor in the School of Mechanical and Materials Engineering, the researchers have filed patents on the nanoscale-based technology, which also allows the batteries to re-charge many more times and more quickly than current models. They expect to bring it to the market within a year.

In particular, the researchers have developed an anode made of tin, rather than the carbon used currently. Rechargeable lithium ion batteries are made up of two electrodes, the cathode and an anode. During charging, the lithium ions move from the cathode to the anode. The anode holds the lithium ions and stores the battery’s energy. When the battery is used, the ions move from the anode to the cathode, discharging electrons and creating an electric circuit.

A rechargeable lithium-ion battery is composed of two electrodes – the cathode and the anode – which are separated by an electrolyte. Lithium ions move from the cathode during charging, and are stored as energy by the anode. The reverse occurs during discharging to create an electric current.

Current lithium-ion batteries typically have anodes made from graphite, which only has about a third of the energy-storing capacity of tin. But the tin anodes suffer from whisker growth, which can short-circuit a battery.

The new tin anode has the potential to store almost three times the energy of graphite.

Norton and postdoctoral researcher Uttara Sahaym developed the novel material a little over a year ago while working on a project to mitigate tin whiskers, which are literally tiny whiskers that grow on tin-plated electronics. The whiskers, which can sometimes grow as long as 10 millimeters, are a pesky problem in microelectronics because they create short circuits that can cause catastrophic damage. Yet, despite the fact that tin whiskers have been causing problems for more than 60 years, researchers have been unable to come up with ways to entirely avoid them.

Norton and his group decided to turn the problem on its head and see if they could control the growth of tin whiskers, instead of trying to get rid of them. They applied the work to developing a tin-based anode for batteries.

The researchers developed a method for growing tin nanoneedles directly onto copper foil using a standard electroplating process that is commonly used in industry. Electroplating means the tin-based anode costs less than regular graphite anodes with triple the energy storage capacity. The end product battery will look exactly the same as the current batteries, so that manufacturers don’t have to redesign their electronic devices to make room for a new battery.

 

With support from the WSU College of Engineering and Architecture’s Emerging Technology Fund, which is funded by private donations, the researchers have started building and testing the batteries.

[source: Washington State University]
Jun 5, 2012Blagojce Krivevski
Toyota Develops V2H System for Electric Vehicles and HomesGreen Automotive to Join Forces with Liberty Electric Cars
You Might Also Like
 
Mitsubishi Completes New Li-ion Battery Separator Plant
 
A123 Finds Potential Safety Issue in Fisker Batteries
Blagojce Krivevski

Blagojce Krivevski is physicist and green technology lover. Keep in touch with Blagojce through his email, web site, Twitter, Linkedin, Facebook and Google+.

June 5, 2012 Electric Car News, Technologybatteries, Grant Norton, lithium-ion, lithium-ion batteries, WSU
Follow Us
  • facebook
  • twitter
  • google-news
  • linkedin
  • youtube
  • instagram
  • feedburner
Recent News
Ford F-150 Lightning Customers to Receive 250 kWh of Complimentary Ultra-Fast Charging at Electrify America Charging Stations
August 17, 2022
2023 Kia Sportage PHEV priced at $38,490
August 17, 2022
Dodge enters electrified era with Hornet R/T plug-in hybrid crossover
August 17, 2022
Eurocell in final stages of discussions to build first european Gigafactory in the Netherlands
August 17, 2022
Nissan announces pricing for Townstar, its all-new fully electric compact van
August 17, 2022
About
ElectricCarsReport.com ElectricCarsReport.com is a website dedicated to pure electric vehicles and the full range of consumer information and tools about electric cars, green technology energy, and the environment.
Latest News
Ford F-150 Lightning Customers to Receive 250 kWh of Complimentary Ultra-Fast Charging at Electrify America Charging Stations
August 17, 2022
2023 Kia Sportage PHEV priced at $38,490
August 17, 2022
Dodge enters electrified era with Hornet R/T plug-in hybrid crossover
August 17, 2022
Subscribe

Sign up for our newsletter to receive the latest news and event postings.

Get in touch

Email: [email protected]

Archives
  • facebook
  • twitter
  • google-news
  • linkedin
  • youtube
  • instagram
  • feedburner
DMCA.com
© ElectricCarsReport.com | All Rights Reserved.