Ford is using two proprietary wireless monitoring methods to improve lithium-ion battery capability and durability of the advanced battery systems that will power its upcoming plug-in hybrid and electric vehicles.
Ford’s progress is enabled by two monitoring methods that allow engineers to collect real-time performance data from batteries in the lab and on vehicles in the field via a secure Internet server, and wirelessly update system software to improve capability and durability. These proprietary methods have significantly reduced test-fleet downtime and allowed Ford to more than double its battery lab-testing capability.
System-specific engineers are notified via email whenever these software update opportunities occur, based on adaptive event monitoring that can detect conditions of interest and automatically collect relevant data. This method has already led to at least 20 major design improvements for Ford’s future plug-in hybrid and all-electric vehicles.
Ford’s battery researchers are focusing on lithium-ion technology’s ability to recharge under a range of conditions including state of charge (from empty to full), battery age (from new to old) and environmental temperatures (from freezing cold to scorching hot).
Understanding how lithium-ion’s material properties perform under a variety of conditions is a critical step toward determining system control algorithms that will allow quick, efficient recharging while minimizing cell deterioration to maximize battery life.
Ford will launch two all-electric vehicles – the Transit Connect Electric light commercial van in North America in late 2010 and in Europe in 2011, followed by the Focus Electric passenger car in North America in 2011 and Europe in 2012. Two next-generation hybrid electric vehicles and a plug-in hybrid electric vehicle follow in North America in 2012 and Europe in 2013.